### Extreme Temperature, Rad-Hard Power Management ASIC, Phase I



Completed Technology Project (2010 - 2010)

#### **Project Introduction**

Ridgetop Group will design a rad-hard Application Specific Integrated Circuit (ASIC) for spacecraft power management that is functional over a temperature range of -230 to +130

o

C. This ASIC is intended to work in conjunction with a Fuel Cell power system and battery back-up to provide uninterrupted power to critical modules in Space. Ridgetop will combine Radiation Hardening (RH) techniques with Large Scale Integration (LSI) methodologies to build a power management system for spacecraft applications onto a single monolithic circuit. The significance of this innovation is a single reliable component (ASIC) that will meet platform requirements for high voltage, wide operating temperature range, and radiation tolerance (minimum 100 krads Total Ionizing Doze (TID), 100 MeVcm2/mg Single Event Latchup (SEL). During phase 1, we will select two functional blocks from within a representative NASA power management system as test cases. Designs for these blocks will be developed and validated through SPICE circuit and radiation simulations, using technology files provided by a commercial foundry. In phase 2, Ridgetop will deliver working prototype integrated circuits (ICs) that meet and exceed the above requirements.

#### **Primary U.S. Work Locations and Key Partners**





Extreme Temperature, Rad-Hard Power Management ASIC, Phase I

#### **Table of Contents**

| Project Introduction          | 1 |
|-------------------------------|---|
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Project Transitions           | 2 |
| Organizational Responsibility | 2 |
| Project Management            | 2 |
| Technology Maturity (TRL)     | 2 |
| Technology Areas              | 3 |
| Target Destinations           | 3 |



#### Small Business Innovation Research/Small Business Tech Transfer

# Extreme Temperature, Rad-Hard Power Management ASIC, Phase I



Completed Technology Project (2010 - 2010)

| Organizations<br>Performing Work | Role                       | Туре                                             | Location             |
|----------------------------------|----------------------------|--------------------------------------------------|----------------------|
| Ridgetop Group,<br>Inc.          | Lead<br>Organization       | Industry<br>Women-Owned Small<br>Business (WOSB) | Tucson,<br>Arizona   |
| Langley Research Center(LaRC)    | Supporting<br>Organization | NASA Center                                      | Hampton,<br>Virginia |

| Primary U.S. Work Locations |          |
|-----------------------------|----------|
| Arizona                     | Virginia |

#### **Project Transitions**

0

January 2010: Project Start



July 2010: Closed out

#### **Closeout Documentation:**

• Final Summary Chart(https://techport.nasa.gov/file/140614)

# Organizational Responsibility

# Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Organization:**

Ridgetop Group, Inc.

#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

## **Project Management**

#### **Program Director:**

Jason L Kessler

#### **Program Manager:**

Carlos Torrez

#### **Principal Investigator:**

Ronald Carlsten

# Technology Maturity (TRL)





Small Business Innovation Research/Small Business Tech Transfer

# Extreme Temperature, Rad-Hard Power Management ASIC, Phase I



Completed Technology Project (2010 - 2010)

## **Technology Areas**

#### **Primary:**

- TX02 Flight Computing and Avionics
  - └─ TX02.1 Avionics
     Component Technologies
     └─ TX02.1.6 Radiation
     Hardened ASIC
     Technologies

## **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

